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Un uiliraction by a oirip 

A. Erdelyi and C. H. Papas 

Introduction 

The problem of diffraction by an infinite strip or slit has been the 

ioda 

(2) 

subject of several investigations* . There ars at least two "exact" methods 

for attacking this problem. One of these is the integral equation method, 

the other the Fourier-Lama method.*   The integral equation obtained for 

chis problem cannot be solved in closed formj expansion of the solution in 

powers of the ratio (strip width/wavelength) leads to useful formulas for low 

freavsncies. In the Fourier-Lame method the wave equation is separated in 

coordinates of the elliptic cylinder, the solution appears as en infinite 

scries of Mathieu functions, and the usefulness of the result is limited by 

the convergence of these infinite series, «nd by the available tabulation of 

riathieu functions. 

The variation«! technique developed by Levine and Schwinger avoids 

some of the difficulties of the above-mentioned methods and, at least in 

principle, is capable of furnishing good approximations for all frequency- 

ranges. The scattered field may be represented as the effect of the current 

induced in the strip, and it has been proved by Levine and Schwinger*  that 

it is possible to represent the amplitude of the far-zone scattered field in 

terms of the induced current in a form which is stationary with respect to 

small variations of the current about the true current. Substitution, in 

this representation, of a rough approximation for the current may give a re- 

markably good approximation of the far-zone scattered field amplitude. In 

this note we assume a normally incident field polarized parallel to the gen- 

erators of the strip. As  a rough approximation; we take a uniiona density of 

the current induced in the strip. Since the incident magnetic field is 

constant over the strix. Fock's theory*3' may be cited in support of the 
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uniformity of the current distribution, except near the edges vhere the be- 

haviour of the field"•  indicstss an Infinite current density« A mors 

detailed analysis ol" the current-, by houilin and Phillips»  , lö  nVäilabls 

but was not used here. 

Once the (approximate) amplitude of the far-zone field has been ob- 

tained, the scattering cross-section may be found by the application of the 

scattering theorem/ ''  which relates this cross-section to the imaginary 

part of the amplitude of the far-zone scattered field along the central line 

of the umbral region. In spite of the crude approximation adopted for the 

induced current, the scattering cross-section shows a fair agreement with 

other available results» 

Integral Equation 

We assume a plane wave with harmonic time dependence exp(-iwt), 

normally incident on the perfectly conducting infinitesimally thin strip 

of width 2a, 
a-0,  -a^y^a . (l) 

We further assume that the incident wave is polarized parallel to the edges 

of the 8trip (i.e. to the x axis) so that the only nonvanishing components 

of its electric field E, magnetic field H, and complex Poynting vector S^ 

(all measured in MKS unit3, bars denoting conjugate complex numbers) are 

E^ - exp(ikz) (2) 

HyT - k/(eon) exp(ikz) (3) 

Sz    m*x   V " k/(ö>!l) (U) 

The scattered electric field is again parallel to the x axis, and the 

total electric fielu is the sum ox the incident and scattered field, 

Ex(y,z) - Er
1(yrz) • Ex

8C(y,z) (5) 



The boundary condition on the screen is the vanishing of the electric field 

'JC 
and the scattered field, E,  , must represent, at large distances from the 

screen, an outgoing cylindrical weve (Sonmerfeld's radiation ccndition). 

The expression of the total electric field in terni3 of the induced 

current K^Cy) is 

r.a> ,, r,„  _.,2. 21V2 v  el)   r     9  olV* 
Ex(yfz) - exp(ikz) - con/U j HQ'  (k [(y - y'T • aZJ  ) yy'Jdy' 

-a (7) 

i/li H v (k l(y-y') • z J  ) being the two-dimensional free-space Green's 

-a 

1/2. 
~'('k ! (v - v' )" * z" 

function. The scattered field in (7) certainly satisfies Sommer fold's radia- 

tion conditionj in order that it also satisfies (6), we must have 

1 - «u/u |\(1) 0< |y-y»| ) yy') ay'   |y|^&        (8) 
«a 

and this is the integral equation of our problem. 

Far-Zone Scattered Field .Amplitude 

We define the far-zone scattered field amplitude   A(0)   by 

Ex
8C~-i/U [2/(trikp)]l/2   exp(ikp) A(0) kp—•« (9) 

where   pcos 0" z    and    p sin 0»-yj this expression represents a cylindrical 

outgoing wave of "amplitude" A. 

Since 

Hn
(1) (k[(y-y«)2 + s*]     j[2/(nikp)]    *    exp(ikp* iky« sin 0) 

when kp—>•<», we have from (7), for large kp, 

1/2 */* 
Ex

8C-i/U [2/(nikpj|        exp(ikp) J    icon exp(iky» sin 0) \(V%) dy«      (11) 
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Comparing (9) and (11) we g'jt 

S 
c 

A(0) " icon I exp(iky' sin 0) K_(v') dv-: (12) 

-8 

A Scattering Theorem 

If ? donotes the scattered energy flux per unit length, then the 

scattering cross-section <r^ is defined by 

(T*  - P/S (13) 

where S « 1/2 Re S1- k/(2o>n) is the incident energy flux per unit area. 

(HO 
a a 

P - 1/2 Re J E^ (y',0) Kx(y«) dy' - 1/2 Re f Kx(y') dy' 

-a -a 

since    E * = 1    at   a • 0.    Hence, 

a 

<^ -    uuA    Re     !    K (yt) dy' (l£) 
-a 

But from (12) 
a 

A(0) - icoii    P  Kx(y«) dy* (16) 

-a 

Therefore, comparing (15) and (16) we get 

Or* -    Im A(0)/k (17) 

It may be remarked that in the limit for very high frequencies, the 

cross-section (1?) turns out to be twice the projected area. At first sight 

the factor two may af.em  inconsistent with geometrical optics, but actually 

the discrepancy is due to the different definitions of the scattering cross 

section.**' 
Variational Principle 

We multiply the integral equation (8) by K (y), integrate from y»-a 
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to ym+a,  divide by the square of 1 K (>)dy, ana then recall (16), Thus 

we obtain ~a 

r a 

A(0) - üi 

J\(y) dy 
t-8 

— — (18) 

(DM f f yy) H0
(1 Ck |y-y'|) yy) dy dy« 

-a -a 

In Appendix A it is shown that the expression (18) is stationary with res- 

pect to small variations of K about the true K which satisfiso the integral 

equation (8). Consequently, if we substitute a reasonable trial function for 

the unknown K^. in (18), ve expect to obtain a reasonably accurate value of 

A(0). 

Trial Function 

According to Fock's theoryv"' the current induced in the central 

region of the strip is equal to twice the tangential component of the in- 

cident magnetic field. And according to Bouwkamp' ' H_ must have a singu- 

larity like (a^ -yZ)"1'«- ai tne edges. This certainly conforms to the 

(3) detailed information Moullin and Phillipsw reported. In the present paper 

we take for a trial function K_(y) • 1» thus ignoring the effect of the 

edges« 

Scattering Cross Section 

With K (y) » 1, computation (see Appendix B) shows that (18) be- 

comes feka "") 

Uid)]"1 » (uiakf-H I H <D (t)dt-H.(D (2ka) • (irika)'1}'  (19) 

u ö x J 
And applying the theorem (17) to (1?), we get 



cr'AUa) 

I    ,T    (t)dt - J_ (?ka) 

-Ö- 

(2o; 

2k; 

J I    «L (t)dt-J_(2ka) 

r2ka 

f    Y (t)dt-Y (2ka) - (irka)"1 

1/       o 1 

The integrals appearing here have been tabulated* 

Results 

A plot of. <rV(Ua) versus ka is shown in the graph. This is a 

plot of eq.(20h For small ka we have Rayleigh scattering. As ka in- 

creases the curve performs a damped oscillation about cV(Ua) • 1. And 

for ka —+°°±t  can be shown by means of asymptotic representations of Bessel 

functions and their integrals that a*—>l*a. 

According to Babinet's principle* ' the problem we have dis- 

cussed is complementary to the problem of scattering by a slit for a nor- 

mally incident wavs polarized perpendicular to the axis of the slit. For 

intermediate values of ka our curve behaves qualitatively as Morse and 

Rubinstein's i    the quantitative agreement is not very good, the devia- 

tion being due to cur choice of an overly simplified trial function. It 

is quite remarkable how such a rough approximation of the induced current 

yields fairly good results over the entire spectrum. 
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Appendix A 

We show uere that A(0) of (15) is stationary with respect to Small 

variations of K(y) about the true K,{y)    which satisfies the integral 

equation (8). 

From (18) and the calculus of variations it follows that 
a    & 

I { «*M A |    j   yy) HQ
(1)

 (k |y-y«i) yy>) dy dy< 

-& -a 
a   a n\ 

• A   j    ( 6 My) H.V"•' (k ly-y'l) yy') dy dy« 
-a =a 

a   a 
* A    {   f *X(y) Ho(1) (k ly-yM) 6 Kx(y«) dy dy« 

a a 
2   f 6 yy) dy        f yy) dy   . 

-a -a 
a 

-p. -a 

Rearranging terras we get 

a 
5 A   j  K (y) H U)  (k jy-y'l) K (y«) dy dy' 

i 
J -a 
f 6 K^y) dy ^ fyy) dy - A r HO>  (k| y-y«j) yy«) dy«   ( 
a £-a -a J a r*^ * ) 

+    j   5 K (y«)dy*f [    K (y)dy - A   f H U) (k|y-y«|) K (y) dy    C . 

»R ^ »a -a ' 

The right side of this equation disappears for small arbitrary variations 

6 Ky.(y) because the quantities in curly brackets are zero by virtue of (12), 
x a 

i.e», A(0) » io»ji | yyjdy, and the integral aquation (8). Consequently 
-a 

6 A • 0 and the expression (18) is stationaryo 



A-2 

Appendix    B 

WT 

trial  function    K (y) » constant,   (Id; becomes 

a    a 

' 16TI2 i J Ho(1) (Hy-yM)dydy. 
-a -a 

Put k(y*y«) - s, k (y-y1)  - t . Then 

ÄT5I- 3iTÖS)2[jHoa!(!t|)dsdt 

S 

where S is the square vith vertices (• 2kav0), (0,*_ 2ka) . 

Tot Q be thp quadrant s >0, t>0, s • t^2ka. Then 

rr 2ka 

77~r - r-~o \ \ H (1) (t) dt - * A(0)  pi (ka)2 ) )    o 8 ̂
^    J" (2ka-t)H^'(t)dt. (1), 

2ka 
Since  J t K ^^(t)dt - 2ka E,*1', (2ka) • •£" , the above equation becomea 

0 

(2ka "N 

~~   • ^—1  f H WftVft - Ih^^Zk«) * —rf— J *(u/        Uika/J        o       •' i-      '         nika      ( 

And this is (19). 
t 

As 

- 2ka 

* 2ka 

Q\ 
TTkl . yB 

-2ka 
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